
PROMOTING PROBABILISTIC PROGRAMMING SYSTEM (PPS)
DEVELOPMENT IN PROBABILISTIC PROGRAMMING FOR
ADVANCING MACHINE LEARNING (PPAML)

GALOIS, INC.

MARCH 2018

FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

AFRL-RI-RS-TR-2018-073

 UNITED STATES AIR FORCE  ROME, NY 13441 AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose
other than Government procurement does not in any way obligate the U.S. Government. The fact that
the Government formulated or supplied the drawings, specifications, or other data does not license the
holder or any other person or corporation; or convey any rights or permission to manufacture, use, or
sell any patented invention that may relate to them.

This report was cleared for public release by the 88th ABW, Wright-Patterson AFB Public Affairs Office and is
available to the general public, including foreign nationals. Copies may be obtained from the Defense Technical
Information Center (DTIC) (http://www.dtic.mil).

AFRL-RI-RS-TR-2018-073 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE CHIEF ENGINEER:

/ S / / S /
STEVEN L. DRAGER JOHN D. MATYJAS
Work Unit Manager Technical Advisor, Computing

 & Communications Division
Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

MARCH 2018
2. REPORT TYPE

FINAL TECHNICAL REPORT
3. DATES COVERED (From - To)

OCT 2013 – OCT 2017
4. TITLE AND SUBTITLE

PROMOTING PROBABILISTIC PROGRAMMING SYSTEM (PPS)
DEVELOPMENT IN PROBABILISTIC PROGRAMMING FOR
ADVANCING MACHINE LEARNING (PPAML)

5a. CONTRACT NUMBER
FA8750-14-C-0003

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
61101E

6. AUTHOR(S)

Eric Woldridge

5d. PROJECT NUMBER
PPML

5e. TASK NUMBER
1G

5f. WORK UNIT NUMBER
AL

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Galois, Inc
421 SW 6th Ave Ste 300
Portland, OR 97204

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RITA DARPA
525 Brooks Road 675 North Randolph Street
Rome NY 13441-4505 Arlington, VA 22203-2114

10. SPONSOR/MONITOR'S ACRONYM(S)

AFRL/RI
11. SPONSOR/MONITOR’S REPORT NUMBER

AFRL-RI-RS-TR-2018-073
12. DISTRIBUTION AVAILABILITY STATEMENT

Approved for Public Release; Distribution Unlimited. PA# 88ABW-2018-1159
Date Cleared: 8 March 2018
13. SUPPLEMENTARY NOTES

14. ABSTRACT
Machine Learning has demonstrated the potential to transform many areas of science, commerce, and the military.
However, creating and maintaining successful machine learning systems is an arduous task that requires a doctoral
degree and heroic software engineering efforts. Probabilistic Programming for Advancing Machine Learning (PPAML) —
by creating probabilistic programming systems and associated solvers—aimed to make existing machine learning
applications easier to build and to greatly extend the range of problems that can be successfully solved by machine
learning.
This effort acted as the voice of the user: (a) exposing the probabilistic programming, machine learning and inference
engine performers to a breadth of user scenarios over a wide a variety of domains, (b) evaluated and produced feedback
on PPS tools to enable the performer teams to understand user perspectives and spur them to enhance their PPS for
future users, and (c) developed a community of users in multiple distinct application areas who are invested in the future
developments of PPSs.
15. SUBJECT TERMS

Probabilistic Programming, Machine Learning, Artificial Intelligence, Evaluation

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
STEVEN L. DRAGER

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

34

i

TABLE OF CONTENTS

Section Page

LIST OF FIGURES .. ii

1.0 SUMMARY .. 1

2.0 INTRODUCTION ... 1

3.0 METHODS, ASSUMPTIONS, AND PROCEDURES .. 2
3.1 Develop Challenge Problems .. 2
3.2 Evaluate Probabilistic Programming Systems .. 14
3.3 Annual Summer Schools ... 19
3.4 Program Collaboration .. 21

4.0 RESULTS AND DISCUSSIONS ... 22

5.0 CONCLUSIONS .. 24

6.0 REFERENCES .. 26

7.0 APPENDICES ... 27
7.1 Appendix A: Summer School Participant Demographics ... 27

LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS ... 29

ii

LIST OF FIGURES

Figure 1 Challenge Problem Dimensions ... 3
Figure 2 CP4 – Small Problem diversity characteristics .. 7
Figure 3 Locations of Oklahoma Mesonet weather stations. Stations along the transect are

highlighted. ... 13
Figure 4 Evaluation Framework ... 16
Figure 5 Grappa- a multi-targetable PPL compiler ... 18
Figure 6 Structure of the 2016 Summer School.. 20

Approved for Public Release; Distribution Unlimited
1

1.0 SUMMARY

Machine learning is at the heart of modern approaches to artificial intelligence. The field posits
that teaching computers how to learn can be significantly more effective than programming them
explicitly. This idea has revolutionized what computers can do in a wide range of domains,
including Intelligence, Surveillance, and Reconnaissance (ISR), Natural Language Processing
(NLP), Predictive Analytics, Cyber, and various scientific disciplines. Example applications
include self-driving cars, image search and activity detection, object tracking, topic models,
spam filters, recommender systems, predictive databases, and gene sequencing. Unfortunately,
building effective machine learning applications currently requires Herculean efforts on the part
of highly trained experts in machine learning. Probabilistic Programming is a new programming
paradigm for managing uncertain information.

The goal of the Probabilistic Programming for Advancing Machine Learning (PPAML) program
is to facilitate the construction of machine learning applications by using probabilistic
programming to: (1) dramatically increase the number of people who can successfully build
machine learning applications; (2) make machine learning experts radically more effective; and
(3) enable new applications that are inconceivable today.

As the Technical Area (TA) 1 (TA-1) Domain Experts team for PPAML, Galois contributed
more than 20 years of experience developing high-level and domain-specific languages and more
than 35 years of experience in application driven machine learning research.

2.0 INTRODUCTION

Machine Learning has demonstrated the potential to transform many areas of science, commerce,
and the military. However, creating and maintaining successful machine learning systems is an
arduous task that requires a doctoral degree and heroic software engineering efforts. One cause
of this is the lack of good languages for defining machine learning models and systems.
PPAML— by creating probabilistic programming systems and associated solvers—aimed to
make existing machine learning applications easier to build and to greatly extend the range of
problems that can be successfully solved by machine learning. Galois, as the TA-1 Domain
Experts, also was tasked as the research evaluator and had the following areas of contribution
during the program:

1. Develop Challenge Problems (CPs)
2. Evaluate Probabilistic Programming Systems (PPSs)
3. Organize and Run Summer Schools
4. Foster Collaboration
5. Evaluate Team Challenge Problems

As the TA-1 team we were the voice of the user. Over the course of the program we were able
to (a) expose TA-2 Probabilistic Programming, TA-3 Machine Learning, and TA-4 Inference
Engine, heretofore referred to as TA2-4 performers, to a breadth of user scenarios in a wide a
variety of domains, (b) produce feedback on PPS tools that enable the TA2-4 teams to
understand user perspectives and spur them to enhance their PPS for future users, and

Approved for Public Release; Distribution Unlimited
2

(c) develop a community of users in multiple distinct application areas who are invested in the
future developments of PPSs.

3.0 METHODS, ASSUMPTIONS, AND PROCEDURES

Section 3 describes the methods for each of the primary areas of contribution: Development of
challenge problems, evaluation of TA2-4 PPSs and team challenge problems, annual summer
schools and program collaboration. Results from these efforts are presented in section 4.

3.1 Develop Challenge Problems

The TA-1 team was responsible for developing and delivering challenge problems to performers
in TA2-4. A total of ten challenge problems were developed and delivered over the course of the
program. Three challenge problems were delivered at the program kick-off. Subsequently, the
TA-1 team delivered a new challenge problem every six months, introduced at program Principal
Investigator (PI) meetings.

A framework and set of problem characteristics were developed for evaluating and selecting
candidate problems. We divided these into required characteristics and “diversity”
characteristics. Required characteristics are properties that all candidate challenge problems
must possess because they enable experimentation and the development of probabilistic
solutions. The diversity characteristics were designed to ensure that over the course of the
program the population of challenge problems covered a wide range of domains and problem
types.

Required Characteristics:
Every challenge problem was required to have the following properties:

Learning: The problem involved learning a probabilistic model and then applying that model to
perform some task. In some cases, we defined some pure inference sub-problems to evaluate the
solvers under controlled conditions.

Mature Data: The data must be in a form that is ready to be modeled in a PPS, available in
sufficient quantity, free for distribution, and engineered for use by modelers. We sought
problems that had both high-level representations of data (via careful feature engineering) and
low-level representations (near to sensor data).

Scalability: The problem supports the construction of interesting problem variants. Natural
dimensions for scaling include the number of random variables (e.g., via changing the spatial or
temporal extent or resolution of the data), and the amount of data (where both very small and
very large data sets are of interest). Other scaling dimensions include introducing additional
information sources (e.g., for information fusion problems) or multiple types of queries. These
latter dimensions allowed us to test the degree to which the probabilistic programming languages
support modularity and evolution by measuring how easy it is to modify the programs to
incorporate additional information sources and queries.

Approved for Public Release; Distribution Unlimited
3

Diversity Characteristics: A Taxonomy of Challenge Problems
To ensure generality of PPSs—and to address problems of interest to DARPA—the set of ten
challenge problems selected over the course of the program covered a wide range of domains,
data structures, model types, and queries. We developed the following taxonomy to assess these
factors. Our taxonomy exposes the specific aspects of PPS tested by each problem.

Figure 1 Challenge Problem Dimensions

Problem Domain: PPAML sought to provide new approaches for solving machine learning
problems of interest to defense, science, and the economy. Within DoD, there are different needs
for intelligence analysis; intelligence, surveillance, and reconnaissance; command, control, and
communications; and management of individual platforms (system identification, localization,
control, and health monitoring). Distinctive problems also arise in science (e.g., population
modeling), medicine (e.g., brain structure modeling), and industry (e.g., engine health modeling).

The Data Structure: Different kinds of data naturally require different support within a PPS.
We classified data structures according to content type (sensor signals, tracklets, counts, events,
text, images, tabular data), data structure (vector data versus relational data), and data type
(discrete, continuous, or a hybrid of the two). Many probabilistic modeling and inference
methods are specialized to only discrete or only continuous data, and inference can become very
challenging with hybrid data that mix discrete and continuous variables. Most machine learning
methods focus on vector data. Relational data have typically required different approaches than
vector data. Time series, spatial, and graph data are all special forms of relational data.

The Model Structure: A core issue for PPAML was to develop languages that can express a
wide range of models. We classified model structures according to three dimensions: directed
versus undirected, parametric versus non-parametric, and fixed versus a variable number of

Approved for Public Release; Distribution Unlimited
4

objects. Classical Bayesian networks are directed graphical models, whereas Markov random
fields are undirected models. It is also possible to have combinations of these. It is important for
PPAML to support both kinds of models (although not necessarily in a single PPS). Parametric
models have a fixed number of parameters, and hence, a fixed model structure. Many of the best-
performing machine learning methods are non-parametric, which allows them to optimize
predictive accuracy by adapting the complexity of the model to the complexity of the data.
Developments in probabilistic modeling, such as Gaussian processes and Dirichlet process
mixture models, make it possible to define non-parametric probabilistic models that express
uncertainty in the model structure.

The third dimension concerns the structure of the objects over which inference is performed.
Parametric models such as Hidden Markov Models can be applied to reason about variable-sized
objects (such as protein sequences of varying length), and this is typically more complex than
reasoning over fixed-sized objects. For many problems, the number of objects is not known—for
example, when tracking multiple vehicles using noisy sensors or resolving co-referring
expressions in natural language— and models must explicitly reason about an unknown number
of objects.

The Query Structure: Once a probabilistic model has been fit to data, the primary
computational task is to provide values for some of the variables in the model and make queries
about other variables. We identified four important dimensions along which the query processing
should vary in PPAML: Query Type, One Shot versus Tracking, Operational Tempo, and
Stationary versus Change Points. A posterior query asks for the posterior joint distribution of the
query variables, whereas a Maximum Aposteriori Probability (MAP) query asks for the values of
the query variables that jointly maximize the posterior. In Posterior Marginal and MAP Marginal
queries, some of the variables in the model are “free” in the sense that their values are not
observed, and they are also not queried. Inference can be significantly harder in this case than
when all variables are queried. For decision making, the query often involves computing the
expected value of some variable, where the expectation is taken with respect to some (marginal)
posterior. This can be more challenging because inference cannot necessarily ignore low
probability cases if the value of the query variable is very large. Finally, in many cases of
interest, the query seeks to find anomalous (i.e., low probability) data points. Again, this poses a
challenge for some inference algorithms, because the focus is on the rare cases rather than the
common ones.

A standard query is a one-shot query. One-shot queries do not consider the results of previous
queries. But many applications involve making repeated queries as the input data evolves over
time. We call this a tracking query. It is often possible to exploit the sequential nature of a
tracked system to make these queries faster than if they are viewed as a series of one-shot
queries.

Operational tempo characterizes the frequency of queries. The frequency can vary wildly
between problems. For systems with rapidly-changing dynamics (e.g., quad-rotor aircraft), the
tempo is extremely fast whereas other tracking problems occur at the scale of days or weeks, and
hence exhibit a slow tempo.

Approved for Public Release; Distribution Unlimited
5

Finally, in many applications, the assumption is made that the underlying phenomenon being
modeled is not changing. Consequently, the data can be treated as an independent and identically
distributed sample from the model. However, in other problems of interest, the distributions do
change over time. In such cases, a change point detection query asks the system to identify when
the change occurred (and to characterize that change).

3.1.1 CP1 – Unmanned Autonomous Systems (UAS) SLAM

Unmanned Autonomous Systems are playing an expanding role in achieving missions critical to
national security, natural resource management, emergency response and emerging industrial
applications. To achieve the goals of these various missions, fundamental advancements must be
made that facilitate the development of sensing and control algorithms for these systems. At the
heart of sensing and control of UAS are models that combine or “fuse” multiple sensors to
predict the future state of the vehicle and the world it acts in. This challenge problem was based
on two representative systems that were used to study the sensor fusion problem: a small
automobile with a laser range finder, as well as a flying quad-rotor aircraft (a “quadcopter”) that
included a rich set of controls as well as visual, inertial, and location-based sensors. The
challenge problem required PPS systems to take noisy sensor data and reconstruct both the path
that the vehicle took through the world as well as a map of its surrounding environment.

Subject matter expertise for CP1was provided by Galois.

3.1.2 CP2 – Bird Migration

On peak nights during migration season, billions of birds take to the air across the US. However,
because migration proceeds over vast temporal and spatial scales, and because it is difficult to
observe directly, it is poorly understood. Scientists would like answers to questions such as (a)
do birds wait for favorable winds before migrating (or are they on a fixed schedule)? (b) what
factors influence a bird's decision to stop at some location? (c) what factors influence a bird's
decision to resume migration? and (d) how do these factors vary from one species to another?
Answering these questions requires constructing a model of the dynamics of bird migration.

In this challenge problem TA2-4 teams were tasked with:

• Near-term predictive accuracy (24 and 48 hours into the future)
• Reconstruction of bird population flows
• Coverage of confidence intervals or posterior credible intervals for the population flows

and model parameters.

Subject matter expertise for CP2 was provided by Oregon State University.

3.1.3 CP3 – Automated Track Linking in Wide Area Motion Imagery (WAMI)

The challenge problem of automated track linking in WAMI originates in the automated video
analytics domain, where target tracking algorithms produce short high-confidence tracks of
moving objects, hereafter referred to as “tracklets”. The descriptive and analytic value of these
tracklets is greatly increased if they can be accurately stitched or linked together into longer

Approved for Public Release; Distribution Unlimited
6

tracks following the same target, e.g., a moving vehicle, in the imagery. Tracking object
movement from overhead imagery has both military and civilian applications. An improved
solution to the linking problem could significantly advance the state-of-the-art in WAMI analyst
exploitation tools. We used the publicly released Wright Patterson Air Force Base (WPAFB)
2009 dataset [1] from the Air Force Research Lab (AFRL). The Kitware tracker [2], assessed by
AFRL as state-of-the-art, supplied moving object detections and high-confidence, short duration
tracklets. Geographic context, such as roads, intersections, buildings, and neighborhood types
were also provided, creating the framework for a rich, hierarchical probabilistic programming
problem.

Subject Matter Expertise for CP3 was provided by Kitware.

3.1.4 CP4 – Small Problems Collection

The goal of the “Small Problems Collection” is to create a set of problems that span important
dimensions of the space of probabilistic programs in terms of both program formulation and
probabilistic inference. The set of problems was designed to help the PPAML TA2-4 teams
identify important tradeoffs in the design and implementation of Probabilistic Programming
Systems. Note that this is an important change in direction from the previous focus on
benchmarking of PPS systems.

For the Small Problems Collection, we focused on dimensions that capture abstract problem
structure. These include the following:
1. Data types: Continuous, Discrete, Mixed
2. Data structures: Atoms, Vectors, Relations, Grammars, Graphs
3. Model structure: Directed vs. Undirected, Parametric vs. Non-parametric, Fixed vs. Variable
number of variables, Presence of latent variables
4. Query type: MAP, Marginal MAP, Expectations, Posterior Distribution, Posterior Summary
(e.g., moments), Anomalies
5. Query timing: One-shot (data and query are presented together), Online (fixed query, but data
arrive incrementally, so the query results need to be updated incrementally), Amortized (fixed
data, but multiple, related queries arrive incrementally, and inference costs can be amortized
across them), Online Amortized (both the data and the queries arrive incrementally).

Figure 2 places each of these small problems along these dimensions.

Approved for Public Release; Distribution Unlimited
7

Figure 2 CP4 – Small Problem diversity characteristics

Subject matter expertise for CP4 was provided by Galois.

3.1.5 CP5 – Probabilistic Context-Free Grammars with Latent Annotation

Context-free grammars (CFGs) provide a simple model for the structure of language and are
widely-applied in natural language processing systems. A CFG consists of a set of non-terminal
symbols N, a set of terminal symbols T, and designated start symbol S, and a set of production
rules of the form N → R , where R is a sequence of terminals or non-terminals. For each
nonterminal n ∈ N, the set of rules having n on their left-hand-side are the “rules for n”, which
we denote as Rules(n). A sentence is generated by beginning with the start symbol S, choosing
one of the rewrite rules in Rules(S) and replacing S by the right-hand-side of the chosen rule.
This is repeated, each time expanding one of the non-terminals in the emerging sentence until no
non-terminals remain.

Probabilistic context-free grammars (PCFGs) extend CFGs to define a probability distribution
over the sentences and parse-trees generated by the grammar by specifying a separate
multinomial distribution for each non-terminal n over Rules(n). These probability distributions
can be learned from data consisting of sentences and their parse trees (“treebanks”). The most
famous treebank is the Wall Street Journal (WSJ) treebank developed at the University of
Pennsylvania. It consists of 23 “sections”, and it is available at no cost from the Linguistic Data
Consortium (LDC) at the University of Pennsylvania.

A weakness of both CFGs and PCFGs is that each time a non-terminal is expanded using one of
its rules, the choice is made independently of all other choices. This independence prevents
PCFGs from capturing many important linguistic regularities. One way to address this problem is
to replace very general non-terminals such as noun phrase (NP) and noun (N) with an expanded
set of symbols. For example, we could have NP-animate, NP-inanimate, N-animate, and N-

Approved for Public Release; Distribution Unlimited
8

inanimate, to separately model noun phrases and nouns referring to animate versus inanimate
objects. These are sometimes referred to as annotations because one can imagine manually
annotating each N and NP in a treebank with this additional information. However, there are no
large annotated treebanks, and it is also not clear what annotations should be introduced.

One way to avoid manual annotation is to take the extreme approach known as lexicalization in
which a separate “annotation” is defined for each word in the lexicon. For example, we would
have N-car, N-truck, N-bus and so on. This leads to an immense grammar, and learning the
parameters for the probability distributions requires introducing some form of “smoothing” so
that rules for similar words are given similar probabilities.

In this challenge problem, we investigated a different approach pioneered by Matsuzaki et al. [3]
in which the annotations are “latent”. That is, we can view the parse trees in the treebank as
having “missing” annotations. We specify that each non-terminal can have up to k annotations,
and it is the job of the learning algorithm to determine what those annotations should be and
which sentences should use which annotations. In statistical modeling terms, we replace each
nonterminal by a mixture of distributions over its child non-terminals (which are in turn,
recursively, mixtures over their children). Recent work on this model includes Petrov et al. [4]
and Cohen et al. [5].

This problem was given in two phases.

Phase 1: Fitting a standard PCFG to a subset of the WSJ corpus.

Phase 2: Fitting a latent PCFG to a subset of the WSJ corpus. The number of latent annotations
was fixed.

Phase 2 Hierarchical Dirichlet Process (HDP) option: Fitting a latent PCFG to a subset of the
WSJ corpus. The number of latent annotations were flexible and modeled via a Hierarchical
Dirichlet Process.

Training data consisted of a text corpus (from the WSJ section of OntoNotes 5.0) with associated
constituency-based parse trees (i.e., one terminal associated with each nonterminal leaf node).
The trees were binarized, which is a standard transformation intended to simplify the parsing
code.

Subject matter expertise for CP5 was provided by Galois and Oregon State University.

3.1.6 CP6 – Image Labeling

The problem of multimedia retrieval is to develop the scientific methodology to understand and
discover images/videos with particular content from a complex, large, and growing collection of
multimedia. Real-world multimedia, especially as shared on the Internet, can be challenging to
retrieve using only visual information, due to complex content, partial occlusion, and diverse
styles and quality. The most common solution to this problem is to annotate media with
keywords that describe the content and then perform a keyword search against these annotations.

Approved for Public Release; Distribution Unlimited
9

The problem of annotating images consists of inferring content labels, L, conditioned on an
image, I, and other related metadata information, M, e.g., P(L|I,M).

In Challenge Problem 6, we approached the task of automatic image annotation or labeling by
exploiting the metadata, M, in addition to the visual information, I. Some types of metadata (i.e.,
Exchangeable Image File Format (EXIF) tags) are generated by the camera when the image is
taken; others (i.e., user-provided tags, comments from viewers) are generated after the image is
uploaded to an image-sharing service such as Flickr. We used a subset of the MIRFLICKR
[Huiskes2008] dataset to supply the ground-truth image labels, image features, and related
metadata.

Within the PPAML taxonomy of challenge problems, this CP is related to the Intelligence
Analysis domain; the data structures are a hybrid of discrete (categorical) and continuous
(features and feature distances) presented in both relational and vector forms. The basic
parametric probabilistic model is an undirected graphical model over a fixed model structure
with latent variables. Queries are formulated as marginal maximum a posteriori MAP for
individual images, or joint MAP for the entire graph. The query timing is one-shot with slow
tempo and stationary parameters.

Subject matter expertise for CP6 was provided by Kitware.

3.1.7 CP7 – Flu Spread

Predicting the spread of epidemics through space and time can help government agencies and
organizations better prepare and allocate resources. Seasonal flu epidemics have been closely
monitored and many years of historical data have been collected by the medical community. The
data collected and aggregated by Centers for Disease Control and Prevention (CDC) has been
valuable for researchers trying to develop models to forecast the spread of flu epidemics. In
addition to the CDC data, there are many other data collected by different entities for various
purposes – many of them unrelated to flu epidemics. When those datasets are considered
together with the CDC data, they offer the opportunity to significantly improve our ability to
assess and forecast flu epidemics both spatially and temporally. Datasets include social network
data and vaccination statistics. Those data have different characteristics (e.g., percentages for
CDC regional Influenza-like Illness (ILI) rates and flu vaccination, and quantized flu activity
levels for CDC state ILI rates) and different spatial and temporal resolution. Aggregating the
data into a forecasting model is challenging, but if successful, can provide much-improved
forecasting accuracy over a longer time horizon than what current approaches based on limited
sources of information can accomplish.

The problem was given in three phases.

Phase 1 Problem (Reconstruction)
During Phase 1, the goal was to fuse multiple data sources to reconstruct Influenza‐like Illness
rates at a spatial resolution finer than that of the ILI data from CDC. Performers were to estimate
weekly ILI rates in the 48 contiguous states. The spatial resolution of the estimates was at the
county level. The results were compared to a set of “Evaluation Regions” consisting of state‐

Approved for Public Release; Distribution Unlimited
10

level ILI rates from selected states (Massachusetts, North Carolina, Rhode Island and Texas) and
district‐level ILI rates from 2 states (Mississippi and Tennessee), where each district consists of
multiple counties.

Phase 2 Problem (Nowcasting)
During Phase 2, the goal was to produce estimated ILI rates that are timelier than those published
by the CDC (while maintaining spatial resolution finer than the CDC). The ILI data from CDC
and the Evaluation Region states are released after a delay of 1 to 2 weeks. The goal of Phase 2
was to predict ILI rates in week t using all data from previous weeks t - 1, t - 2, …,t - n. This will
include the CDC ILI rates from week t - 2 and the Twitter data from week t - 1.

Phase 3 Problem (Nowcasting continued)
The task in this phase of CP7 was to predict seasonal rates of Influenza-Like Illness in 60 distinct
sub-populations of the continental US, ranging in size from the entire country to individual
counties.

In addition to historical ILI rate data for each population, three different kinds of covariate data,
representing flu-related tweets, vaccination claims, and weather, were provided for use in
solutions. In a simulated forecast experiment, all four kinds of variables were made available to
solutions, one week of data at a time, over the 32-week target season.

Subject matter expertise for CP7 was provided by Scientific Systems.

3.1.8 CP8 – Desktop Activity Recognition

Desktop knowledge workers perform a wide variety of procedures or activities each day as they
carry out their work. Much of this work is repetitive, so there has long been interest in providing
intelligent assistance for these tasks. One such effort was the Activity Recognition and Proactive
Assistance (ARPA) effort within the Cognitive Assistant that Learns and Organizes (CALO)
project led by SRI International in 2006-7, which was the inspiration for this challenge problem.

We modeled each user as having a library of parameterized workflow procedures. For example,
one procedure would be to provide edits on a document and return it to the primary author. This
procedure consists of the following finite-state machine:

1. Receive incoming EMAIL_IN with an attachment FILE_IN
2. Save the attachment as FILE1
3. Open FILE1 in Word
4. Repeat some number of times:

a. Make edits to FILE1
b. Save FILE1

5. Create EMAIL_OUT as a reply to EMAIL_IN
6. Attach FILE1 to EMAIL_OUT (the attached file is known as FILE_OUT)
7. Send EMAIL_OUT

Of course, there could be many variants of this procedure. For example, in Step 2, the user might
Open the attachment and then use a SaveAs to create FILE1. In step 4b, the user might invoke

Approved for Public Release; Distribution Unlimited
11

SaveAs to create a new file FILE2, which would then be attached to the email message in step 6.
Finally, the user might close FILE1, exit Word, and then later reopen FILE1 in Word.

One way that an intelligent desktop assistant could help the user would be to learn a set of
workflow definitions, detect the start of each new workflow instance, and track the state of each
workflow. Using this information, the assistant could offer to automatically execute some of the
workflow steps via an automation interface. For example, when the user performs step 5, the
assistant could offer to attach FILE1 to the message.

Desktop knowledge workers are famous for multitasking. It is extremely common for the user to
start a workflow and then be interrupted by many other workflows before resuming work on the
original workflow. An assistant could also maintain a list of the active workflows and make it
easy for the user to select a workflow and resume work on it (e.g., by restoring the state in step
3).

In this challenge problem, teams were given a sequence of events recorded from human subjects
engaged in desktop work. These workflows were interleaved, with multiple instances of each
workflow active simultaneously, but with different parameters. The inference task was to
correctly assign each observed event to the correctly-parameterized workflow instance.

In Phase 1, teams processed the events in “batch mode” to learn the workflow. Then, given a
new sequence of events, their system should produce a MAP assignment of workflow identifiers
(with parameters) to each event in the sequence. In Phase 2, teams processed the test sequences
incrementally and computed a posterior distribution over workflow ids (and parameters)
immediately after each event is observed. The metrics in Phase 1 measure accuracy, while the
metrics in Phase 2 we also considered timeliness.

Subject matter expertise for CP8 was provided by Oregon State University.

3.1.9 CP9 – Hackathon I: Data Analysis

Beginning with Challenge Problem 9, the TA1 team in collaboration with DARPA restructured
the approach and executed evaluations as Hackathon events as part of the program PI meetings.

The goal of the first Hackathon was to demonstrate the capabilities of probabilistic programming
for a variety of tasks that arise in data analysis. The Hackathon was not structured as a
competition. Instead, our intent was for performer teams to collaborate in order to best achieve
the goal of demonstrating the capabilities of probabilistic programming.

We developed a data set based on the Gapminder database. This database consists of data on
519 variables by country and by year. We chose approximately 80 parallel time series that were
of interest and had reasonable coverage and included many missing values. Some of the
variables in the time series can be viewed as “intervention” variables and other variables can be
viewed as “outcome” variables, but many variables could be viewed in multiple ways and may
constitute important intermediates.

Approved for Public Release; Distribution Unlimited
12

TA2-4 teams were given the following tasks to complete during the two-day hackathon event:

Task 1: Impute missing values. Create a joint model of the data and then sample from the joint
posterior over the missing values.

Task 2: Generate causal hypotheses about the effects of intervention variables on outcome
variables. Fit models of the outcome variables as a function of intervention variables
(and potential confounding variables as appropriate) to generate causal hypotheses about
the effects of intervention variables on outcome variables.

Task 3: Model the processes that are causing missing values. Determine cases where the
missing values are not missing at random. Build models of the missingness processes and
incorporate those models into the imputation process of Task 1 if possible.

Task 4: Criticize and refine a given model. Identify weaknesses in the TA1-provided model.
Develop a refinement of the model (or completely replace it) to obtain a better model.

Task 5: Compute optimal decisions. Using the model(s) from Task 2 and given a fixed budget,
determine the optimal allocation of the budget in order to benefit the largest number of
people.

Subject matter expertise for CP9 was provided by Oregon State University.

3.1.10 CP10 – Hackathon II: Weather Data

The goal of the final PPAML hackathon was to demonstrate the power of probabilistic
programming to support extrapolative generalization. Most statistical learning methods only
perform interpolative generalization—that is, they interpolate between the given training
examples to answer new queries. A consequence of this is that to work well across a wide variety
of queries; they must be given very large training sets that provide examples of the full range of
variability of the problem. In contrast, probabilistic programming methods have the potential to
represent background knowledge and combine it with the training data to extrapolate beyond the
training data.

The data for this exercise is provided by the Oklahoma Mesonet (OK Mesonet). In an NSF-
funded project, Oregon State University collaborated with OK Mesonet on new methods for
automated data quality control. Weather network sensors frequently break or drift out of
calibration. The goal of automated data quality control is to detect broken and uncalibrated
sensors and flag them for visits by technicians. Similar problems arise in other sensor networks
and emerging Internet of Things applications.

The OK Mesonet consists of approximately 130 weather stations distributed across the state (see
Figure 3). Stations in southeast Oklahoma are located at elevations in the 100-300m range above
sea level and are heavily influenced by the Gulf of Mexico. Stations in northwest Oklahoma are
at elevations in the 500-1350m range and are more influenced by winds originating in front of
the Rocky Mountains.

Approved for Public Release; Distribution Unlimited
13

The dataset provided by the TA-1 team consisted of a set of stations that lie along a transect
extending from southeast Oklahoma to northwest Oklahoma. The stations along this transect are
divided into three groups. Six stations in the middle of the transect constituted the training-only
stations. Data from four southeastern-most stations was provided for both training and testing.
And data from four northwestern-most stations formed the test set. To successfully answer the
queries, the teams were required to extrapolate in space and time.

Figure 3 Locations of Oklahoma Mesonet weather stations. Stations along the transect are highlighted.

TA2-4 teams were given the following tasks to complete during the two-day hackathon event:

Task 1: Coarse-Scale Prediction. The goal of this task is to predict summary statistics
including monthly mean, high, and low temperature, mean, max, and min relative
humidity, mean, max, and min solar radiation, and mean, max, and min wind speed. This
query will be answered without any data from the test region stations.

Task 2: Pure Prediction. In the pure prediction query, the teams will predict the readings for
temperature, pressure, relative humidity, and solar radiation at a station without any other
information about that station except its location and elevation.

Task 3: Conditional Prediction. In the conditional prediction query, the teams will be given
data at a station for some sensors (e.g., pressure, solar radiation, wind speed, and
direction) and be asked to predict the values of other sensors (e.g., temperature and
relative humidity).

Task 4: Imputation. For this query, the teams will be given data for all sensors at one of the
northwestern stations during the test period, but a substantial fraction (e.g., 40%) of the
observations will be missing. The task will be to impute the missing values. This will
require various conditional prediction models.

Task 5: Quality Control. For this query, the teams will be given data for a station. The data will
contain inserted sensor failures based on a sensor failure simulator that we have
developed. The teams will be asked to identify which sensor readings are the result of

Approved for Public Release; Distribution Unlimited
14

broken or miscalibrated sensors. This is very similar to the Imputation task, but it tests
how well the teams can estimate the uncertainty of the imputed/predicted values.

Subject matter expertise for CP10 was provided by Oregon State University.

3.1.11 Challenge Problem Artifacts and Future Research

Over the course of the PPAML program, Galois facilitated the distribution of challenge problem
artifacts to many non-affiliated research initiatives. With the end of the program performance
period, Galois has archived all challenge problem artifacts and made them publicly available.

3.2 Evaluate Probabilistic Programming Systems

Galois was responsible for evaluating the performance of each PPS on each challenge problem,
measuring both the quality of the solutions and the run-time performance. A report summarizing
each TA2-4 PPS results on each challenge problem was written and made available to all
program participants, as well as presented at each PI meeting.

3.2.1 Procedures for Evaluating Challenge Problems

Challenge problem evaluations were structured in six-month cycles. The general structure of
each evaluation cycle consisted of:

• Challenge Problem Introduction – At each PI meeting a subset of Challenge problems
(including sub-phases) were introduced to the TA2-4 performers. The introductions
consisted of a problem description, evaluation metrics, and evaluation milestone
schedule.

• Beta Evaluation Phase – Typically at the start of month three of the evaluation cycle,
Galois opened a beta evaluation phase where we would accept PPS solution submissions,
run evaluations and provide evaluation results. This was an iterative process, supporting
PPS solution refinement.

• Final Evaluation – Two weeks before the PI meeting, the beta submission window
closed. Galois ran final evaluation for each PPS generating a results report for DARPA
and TA2-4 teams.

• Reporting of Results – Results from the evaluation cycle were presented at the PI meeting
and distributed to TA2-4 teams.

3.2.2 Quantitative Evaluation

Individual challenge problems explicitly defined the criteria for measuring the quality of PPS
solutions as part of the problem description. In addition, Galois collaborated with TA2-4 teams
to solicit feedback. With each PI meeting, after problem introduction, Galois hosted breakout
sessions where teams could provide feedback and help shape problem evaluation criteria.

Approved for Public Release; Distribution Unlimited
15

3.2.3 Qualitative Evaluation

In assessing results of the first two evaluation cycles in Phase I of the program, Galois identified
an opportunity to leverage our deep experience developing high-level and domain-specific
languages. While the quantitative metrics were critical to the development of PPSs, this fell
short in assessing and providing valuable feedback on usability. Galois, having more than
twenty years of experience developing high-level and domain-specific languages had the
resources available to fill this need.

In evaluation cycle three Galois introduced a pedagogy experiment as part of the evaluation
criteria with TA2-4 teams. The goals of the experiment were to:

• Improve PPS features and usability
• Expose gaps in documentation
• Improve communication with/across teams

A series of pair programming sessions between individual TA2-4 teams and Galois were run
where we implemented and explored a series of simple models. This enabled Galois to work
directly in the PPS, facilitating deeper knowledge of PPS capabilities, usability and language
design. Feedback was provided directly to TA2-4 teams as well as summarized as part of the
evaluation results at the PI meetings.

3.2.4 Evaluation Infrastructure

A priority for Galois as evaluator was to be able to support many performers wishing to rapidly
iterate on challenge problem solution development. It was critical that for any PPS submission
during the beta evaluation phase of a cycle, Galois have the ability to run the evaluation and
provide results quickly to enable performers to refine their solutions.

Galois developed an evaluation framework to facilitate PPS evaluation runs. An overview of the
evaluation framework is shown in Figure 4. A specification defining PPS submission
requirements was developed and shared with TA2-4 teams. This specification defined PPS
packaging requirements, installation requirements and execution requirements. PPSs adhering to
these requirements enabled Galois to drop in new solutions and automate the evaluation
execution.

Approved for Public Release; Distribution Unlimited
16

Figure 4 Evaluation Framework

3.2.5 Team Challenge Problems

Goals and Impact

One objective of the PPAML program was to develop user scenarios in a variety of application
domains where PPS tools can be applied.

As part of this objective, each TA2-4 team was responsible for defining a Team Challenge
Problem (TCP) to demonstrate and evaluate the capabilities of their PPS tools. By year two of
the program, this requirement had not yet been met. The TA1 team proposed a process for
satisfying the Team Challenge Problem requirement that leveraged the expertise gained over the
first two years managing TA2-4 challenge problems. This was agreed to by the Government and
executed over the final two years of the program.

The goal of the Team Challenge Problems was to demonstrate the merits of probabilistic
programming to a broad scientific and technical audience. The ideal TCP exploits probabilistic
programming to demonstrate novel capabilities on a compelling domain problem. This could
include advancing the state of the art in some established problem or achieving interesting
performance on a novel problem.

Approved for Public Release; Distribution Unlimited
17

A total of six TA2-4 and TA3 teams submitted a Team Challenge Problem for evaluation:
Charles River Analytics, Gamalon, Indiana University, Massachusetts Institute of Technology,
Applied Communication Sciences, and SRI International.

TCP Management and Evaluation Plan

Satisfying the Team Challenge Problem requirement divided naturally into two phases: Defining
the problems and evaluating the solutions. The tasks for each phase are described in the
following sections.

Phase 1: Defining Team Challenge Problems

The TA1 team developed a request for proposal (RFP) detailing the TCP requirements and used
to measure acceptance of performer proposals. The requirements covered the following
dimensions: problem description and justification, feasibility, evaluation metrics and approach,
dissemination, and suggested reviewers.

The TA-1 team reviewed submitted proposals against the following criteria:
a. Relevance to DoD and the goals of the PPAML program.
b. Potential to solve a novel problem or beat the state of the art on an existing problem.
c. Extent to which probabilistic programming will be the key enabling factor for success.
d. Degree to which the metrics are appropriate to the problem domain.
e. Extent to which the evaluation protocol supports an independent test.
f. Likelihood that the challenge problem data and evaluation can be publicly replicated.
g. Feasibility of the engineering plan for evaluation.

The Government reviewed the analysis before sharing the feedback with each submitting team as
well as final proposal approval.

Phase 2: Evaluating the Team Challenge Problems

Team challenge problem submissions were evaluated in two rounds. The TA-1 team evaluated
submitted solutions using the evaluation metrics identified in the proposals. Evaluation results
were provided to each team to include in their PI meeting status presentations. The TA-1 team
met with each team prior to the PI meetings to arrive at an appropriate interpretation of the
results.

TA-1 Team Challenge Problem

Building on our experience working with other performers in a TA1 role, and also leveraging the
general programming languages expertise at Galois, we developed a probabilistic programming
language (PPL) called Grappa. The goal of Grappa was to develop an approach to PPLs that
could utilize special-purpose, efficient inference methods while still providing the expressivity
and productivity benefits of existing general-purpose PPLs. The tension between these two goals
— efficiency versus expressivity – manifests itself in terms of the representation used for the
programs written in a PPL. A more general representation can represent more programs, yielding

Approved for Public Release; Distribution Unlimited
18

a language with a higher expressivity, but efficient inference algorithms, such as Hamiltonian
Monte-Carlo (HMC) sampling or Belief Propagation (BP), require more specific information,
leading to special-purpose representations for each algorithm. Further, many of these special-
purpose representations rule out whole classes of probabilistic programs; e.g., HMC requires
programs to be represented as probability functions with gradients, which allows only
continuous, real-valued variables, while BP requires programs to be represented as Bayesian
networks, which allows only discrete variables. These representations are not only in direct
conflict with our expressivity goal, but can often, as in HMC and BP, be in conflict with each
other.

To overcome these difficulties, we have designed Grappa to be a multi-targetable PPL compiler,
that can target a wide variety of different representations, as depicted in Figure 5. As input
language, Grappa provides a high-level, expressive, functional language similar to many other
PPLs, providing a high level of expressivity. For the subset of Grappa programs that can be
compiled to a particular representation – for instance, programs with only continuous, real-
valued variables, which can be compiled to probability functions with gradients – Grappa can
compile these programs to that representation, allowing special-purpose, efficient inference
methods to be applied to that program. For those programs that fall outside of the subset, Grappa
will emit compiler errors that inform the user of the mismatch. In this way, Grappa can support a
wide variety of efficient inference methods in the same high-level, expressive language.

Figure 5 Grappa- a multi-targetable PPL compiler

Grappa currently includes support for a number of useful representations, such as probability
functions with gradients and Bayesian networks, allowing a number of existing, efficient
inference methods, such as HMC and BP, to be applied. Also included is a representation for
compiling to PyMC models, a commonly-used Python package for performing Markov chain
Monte Carlo (MCMC) sampling, thereby allowing Grappa to leverage the inference methods
provided by that package. Additionally, Grappa provides a plugin architecture, that allows the set
of representations it supports to be extended. This in turn opens up new opportunities for
experimenting with new inference approaches, allowing researchers to try out new
representations and/or combine existing representations without having to write a whole new
compiler. For instance, we have already begun investigating a number of new ideas using this
technology, including:

Approved for Public Release; Distribution Unlimited
19

- Interleaved HMC sampling, for real-valued variables, and BP-based sampling, for discrete
variables, an approach that is particularly amenable to sampling, for instance, the parameters of
hidden Markov models;

- Parallelized sampling of independent variables, to enable speedups for models that can be
decomposed into independent groups of variables;

- Representations for Dirichlet process mixture models, a powerful class of models that have
recently been finding widespread applicability in a number of domains.

A key difficulty in supporting this wide array of compiler targets is that compilers are complex,
difficult to write, and error prone. To avoid this problem, the Grappa plugin architecture for
supporting new representations allows users to define representations using abstract
interpretation. Abstract interpretation is an advanced programming languages technique for
performing program analyses and transformations in a way that is compositional, meaning that
the analysis or transformation of a whole program is built up from that of the pieces by
combining those pieces in a straightforward, regular way. Rather than writing an entire compiler,
a Grappa plugin writer need only provide an interpretation for the constructs of the Grappa
language that a particular plugin supports, as Haskell type class instances. The Grappa compiler
then combines the interpretations of the individual constructs of a program into an interpretation
of the whole program, and also takes care of concerns that are universal across all interpretations,
such as parsing, code generation, etc. Interpretations are much simpler to write and to debug than
compilers because, rather than writing a translator from one syntactic representation to another,
like a compiler, the interpretation of a Grappa construct is itself just code in the implementation
language, or meta-language, used to write Grappa itself, which in this case is Haskell. That is, we
can inspect, unit test, debug, etc., each piece of an interpretation just like standard Haskell code,
instead of having to consider all possible ways a compiler could generate code. Further,
interpretations are also type-checked, just like standard Haskell code, which also prevents a wide
class of errors in the compiler that could generate ill-formed code.

3.3 Annual Summer Schools

Galois developed and led four annual summer school sessions. The objectives of the summer
school as part of the PPAML program were to:

• Grow a research community interested in probabilistic programming,
• Create a community of practitioners with experience in probabilistic programming,
• Identify potential transition candidates and help them assess the suitability of probabilistic

programming for their problems, and
• Provide systemic feedback to the PPS development teams regarding the usability of their

probabilistic programming systems.

In pursuit of these objectives, each summer school was designed to teach participants the
foundational background required for probabilistic programming, give them an opportunity to
work directly with the creators of probabilistic programming languages being developed as part
of PPAML, and apply the tools to specific domain problems.

Approved for Public Release; Distribution Unlimited
20

Online surveys and personal interviews were utilized during the summer school to elicit
feedback from the participants about the lectures, the PPSs as well as the content and structure of
the summer school itself. Feedback was shared with both DARPA and participating TA2-4
teams.

3.3.1 Structure of the Summer School

Each summer school session was structured as a two-week session. Utilizing participant and
presenter feedback, along with our own observations and experience, Galois evolved the
structure and format over the program. By year three, and continued in year four we found the
ideal structure and approach to include:

• One TA2-4 team presenting their PPS solutions each week
• A mix of foundational content, lecture and hands-on exercises
• Provide time for participants to work on their real-world projects, with results and

experience presented at the end of each week

Figure 5 shows an example outline from the 2016 session.

Figure 6 Structure of the 2016 Summer School

3.3.2 Summer School Participants

Participants at each summer school included students, researchers, and practitioners from
industry who work on problems that may benefit from probabilistic programming. Collectively,
the participants were well versed in Mathematics and Computer Science and had hands-on
experience with multiple programming languages. Generally, building probabilistic models,
thinking generatively, and fitting data stood out as areas where participants lacked similar depth.

Appendix A contains more detailed demographic information about the participants and
compares it to that of the participants from each of the four summer school sessions.

Approved for Public Release; Distribution Unlimited
21

3.3.3 Summer School Presenters

Over the course of the program nearly all TA2-4 teams as well as two TA-3 teams taught and
presented their PPSs at one or more Summer School Sessions. Typically presenting teams
brought five or more members to ensuring plenty of support for participants. The presenting
teams, and PPSs featured over the course of the program:

• 2014 Summer School
o Massachusetts Institute of Technology (MIT); Venture
o Charles River Analytics (CRA); Figaro
o University of California; Berkeley; BLOG
o Stanford; Church
o Gamalon; Dimple/Chimple
o Indiana; Harkaru

• 2015 Summer School
o CRA; Figaro
o MIT; Venture

• 2016 Summer School
o Invrea; Anglican
o Stanford; webPPL

• 2017 Summer School
o MIT; BayesDB, CrossCat, Venture, Gen
o Gamalon; Particle, Tycho

3.3.4 Feedback Methodology

The feedback elicited during the summer school was intended to provide insights about user
experiences, perceptions about the probabilistic programming tools, and broader observations to
enhance the PPAML program and associated summer schools.

Participants completed questionnaires for each of the major phases of the summer school: On the
first day of summer school, after the foundations lecture, after each of the initial language
lectures, end of each language session, and on the last day of summer school.

Raw questionnaire results were immediately shared with presenting teams. Results were also
used in each session report where major themes were summarized.

3.4 Program Collaboration

Galois configured, deployed and maintained technical infrastructure for supporting PPAML
project collaboration. The primary mechanisms and infrastructure included:

• Wiki Servers: one public facing server, and one team-only server accessible by the
Government as well as all TA1-4 teams. This proved an effective mechanism to maintain
and communicate program information (schedules, contact information, challenge
problem information hub’s). In addition, the wiki’s were used to support Summer School
sessions as a central repository for participants to access session information, agenda’s,
and presented materials.

Approved for Public Release; Distribution Unlimited
22

Periodically the TA1 team was contacted by researchers or people in industry not
affiliated with the program. The wiki proved an effective source to connect their interests
with PPAML materials.

• A set of mailing lists for PI communication as well as to support each challenge problem.

• A Mattermost server was deployed providing enterprise class team collaboration
capabilities for Summer School collaboration.

• Multimedia Digital Archiving System (MIDAS) data distribution server to support data
hosting for the challenge problems. For challenge problems one through seven, Galois
distributed all challenge problem data to TA2-4 teams via the MIDAS infrastructure.

• OwnCloud, a cloud based file sharing tool was used in challenge problems one through
seven for solution staging. TA2-4 teams submitted all submissions via the ownCloud
portal.

• For challenge problems eight through ten, Galois hosted a Gitlab instance to support all
aspects of challenge problem development and evaluation with TA2-4 teams.

• Galois has held regular phone calls to facilitate collaboration. These include: bi-weekly
calls with the Government; weekly calls with the TA1 team participants; as well as
frequent albeit not regularly scheduled calls with TA2-4 teams.

• The pedagogy sessions with the PPS design teams created closer working relationships
and proved valuable in the clarification of assumptions and elaboration of questions.

• A Google-hosted discussion forum was created to further cross-TA team communications
and help identify significant technical topics of importance to the PPAML program. The
forum was community-driven and moderated by Galois.

• A Google-hosted repository was created to hold PPAML-related assets created by the
various TA teams. Assets included in the repository were staged with the goal to transfer
the collected assets to the DARPA-hosted public repository at the end of the PPAML
program.

4.0 RESULTS AND DISCUSSIONS

Galois, as the TA-1 research evaluator, successfully achieved our program objectives.

Develop Challenge Problems – Galois delivered ten challenge problems spanning the set of
metrics laid out at the program kickoff. A new challenge problem was fully defined and
introduced every six months at each program PI meeting, with three problems introduced at the
program kickoff.

Galois worked closely with the Government and TA2-4 teams reviewing the results of each
evaluation cycle, identifying opportunities for future problems. A significant result of this

Approved for Public Release; Distribution Unlimited
23

continuous improvement effort was the restructuring of the final two challenge problems as
Hackathon events. With the culmination of the four-year program, these events were designed to
test and evaluate PPSs against the original program objectives and the maturity of the performer
PPSs.

All challenge problems were designed, built and prepared with the intent to be made publicly
available for future research efforts. Artifacts for all challenge problems are publicly available.
This includes the problem descriptions, datasets and detailed documentation.

Evaluate Probabilistic Programming Systems – To support a large set of PPS evaluations
multiplied by an iterative evaluation approach, Galois developed an evaluation architecture,
PEVAL, which automated the evaluation process. A specification defining PPS submission
requirements was developed and served as a contract with TA2-4 teams.

Galois emphasized communication and collaboration with TA2-4 teams, which contributed to
the successful completion of solution evaluations. This included kick-off meetings to review and
answer questions regarding the challenge problems, on-going check-ins to answer questions and
support solution development as well as providing evaluation results along with our assessment
and insights within twenty-four hours of the completion of any evaluation run.

Evaluation results were successfully completed every cycle with results shared with TA2-4
teams and presented at the corresponding PI meeting. At each PI meeting Galois hosted break-
out sessions which as part of the agenda reviewed the evaluation results and working with
attendees identifying opportunities for future evaluation cycles.

With the introduction of Team Challenge Problems in the second half of the program, Galois
performed independent evaluations across two phases for each of the submitted solutions. Galois
collaborated closely with the submitting teams to setup the proper evaluation environment. With
each submission, we ran the experiments and provided written results within one week. The
results included the metrics achieved as well as a qualitative assessment and inputs. Galois also
supported TA2-4 teams in the development of the results they presented at PI meetings.

Organize and Run Summer Schools – Galois successfully organized, planned and facilitated
four summer schools over the course of the program. Achievements as measured against the
program goals defined for this activity:

• Grow a research community interested in probabilistic programming. Create a
community of practitioners with experience in probabilistic programming. This
objective was successfully achieved. There was a total of 105 participants with 52
coming from Academia and 53 from Industry. Several companies had additional
participants attend in subsequent sessions to continue to develop expertise in probabilistic
programming in their organizations.

• Identify potential transition candidates and help them assess the suitability of
probabilistic programming for their problems. Integrated into the summer school
curriculum was the ability for participants to bring their own domain problems and work

Approved for Public Release; Distribution Unlimited
24

on them during the session. Participants then presented results they achieved, as well as
an assessment of the tools and approaches for their particular problem. As the PPSs
matured through the program, the final two summer school sessions generated several
collaboration and transition opportunities between participants in industry and PPS
teams.

• Provide systemic feedback to the PPS development teams regarding the usability of
their probabilistic programming systems. Feedback from participants was collected
through surveys, direct conversation and participant project result presentations. The raw
survey results and project presentations were shared with the PPS development teams. In
addition, a report summarizing the feedback, and major themes was produced after each
summer school and shared with both the Government and PPS development teams. In
addition to the systematic feedback described, each PPS development team took
advantage of the opportunity to work directly with participants and get direct feedback
throughout each session.

Foster Collaboration – An emphasis of the TA-1 team was a continual focus on enabling
collaboration amongst program performers. Galois setup and hosted several collaboration tools,
data repositories and communication forums to support collaboration workflows. Over the
course of the four-year program, Galois continued to evolve the workflows and tools. A
continuous improvement effort was practiced to take advantage of new collaboration technology
as well as identify new workflows that could have positive impact on the program goals.

Grappa – In the final Phase of the program, Galois was able to develop Grappa, a PPL, which is
currently being applied on two government-funded programs, for the purpose of detecting cyber-
attacks. The first is the Air Force Research Laboratory’s Malware Detection program. For this
program, we are using Grappa to detect cyber-attacks on UAVs, by training a collection of
hidden Markov models to detect communication patterns between processes on a UAV that
differ from “normal” communication patterns. The second is DARPA’s Transparent Computing
program, wherein we are applying Grappa to detect advanced persistent threats in enterprise
networks. For this program, we are applying Grappa to learn “normal” patterns of process
forking, to detect, e.g., Firefox processes forking unexpected system processes that could
indicate a cyber-attack. Grappa is also currently in the process of being open-sourced and moved
to GitHub. Finally, as part of the Grappa project, we have also made theoretical advances in PPL
semantics, by defining a denotational semantics based on Lebesgue integration that also supports
higher-order functional programs. This combination of semantic features, which has so far been
elusive to semantics researchers, is the subject of a submission to the International Conference
on Programming Languages Design and Implementation 2018.

5.0 CONCLUSIONS

As the TA-1 Program Evaluator, we successfully met our primary program objectives.

1. Develop Challenge Problems – A total of ten challenge problems were delivered
spanning a broad range of characteristics designed to ensure that over the course of the
program the population of challenge problems covered a wide range of domains and
problem types.

Approved for Public Release; Distribution Unlimited
25

2. Evaluate Probabilistic Programming Systems – The TA-1 team completed all
evaluations on schedule, measuring the performance of PPSs on each challenge problem
with results presented at each PI meeting.

3. Organize and Run Summer Schools – Over four summer school sessions, a total of 105
participants from both Academia and Industry attended the program. The summer school
track of the PPAML program was an effective approach to growing the research
community interested in probabilistic programming, developing a community of
practitioners with experience in probabilistic programming, identifying transition
candidates and opportunities and providing systematic feedback to the PPS development
teams regarding the usability of their probabilistic programming systems.

Approved for Public Release; Distribution Unlimited
26

6.0 REFERENCES

1. [Dataset] Air Force Research Labs. SDMS: WPAFB 2009 Dataset.
https://www.sdms.afrl.af.mil/index.php?collection=wpafb2009, 2009.

2. [Paper] Arslan Basharat, Matt Turek, Yiliang Xu, Chuck Atkins, David Stoup, Keith
Fieldhouse, Paul Tunison, and Anthony Hoogs. Real-time multi-target tracking at 210
megapixels/second in wide area motion imagery. In Winter Conference on
Applications of Computer Vision (WACV). IEEE, 2014.

3. [Paper] Takuya Matsuzaki, Yusuke Miyao, and Jun'ichi Tsujii. Probabilistic CFG
with latent annotations. Proceedings of the 43rd Annual Meeting on Association for
Computational Linguistics ACL 05 , 05pages: 75-82, 2005.
doi:doi:10.3115/1219840.1219850. URL
http://portal.acm.org/citation.cfm?doid=1219840.1219850.

4. [Paper] Slav Petrov, Leon Barrett, Romain Thibaux, and Dan Klein. Learning
Accurate, Compact, and Interpretable Tree Annotation. In Proceedings of the 21st
International Conference on Computational Linguistics and 44th Annual Meeting of
the ACL, number July, pages 433_440, 2006.

5. [Paper] Shay B Cohen, Karl Stratos, Michael Collins, Dean P Foster, and Lyle Ungar.
Experiments with Spectral Learning of Latent-Variable PCFGs. Journal of Machine
Learning Research, 15 (2014), 2399-2449.

http://portal.acm.org/citation.cfm?doid=1219840.1219850

Approved for Public Release; Distribution Unlimited
27

7.0 APPENDICES

7.1 Appendix A: Summer School Participant Demographics

The following information was compiled from application data provided by the summer school
participants.

Summer School
Participation

2017 2016 2015 2014

Applications Received 45 44 56 21
Applications Accepted 42 35 25 21
Participant Count 34 27 23 21

Highest level of
education

2017
Participants

2016
Participants

2015
Participants

2014
Participants

Bachelors, in progress 1 (3%) 3 (11%) 4 (17%) 4 (19%)
Bachelors, completed 3 (9%) 3 (11%) 5 (22%) 5 (24%)
Masters, in progress 1 (3%) 2 (7%) 3 (13%)
Masters, completed 6 (18%) 8 (30%) 3 (13%)

Doctorate, in progress 14 (41%) 8 (30%) 6 (26%) 9 (43%)

Doctorate, completed 9 (26%) 3 (11%) 2 (9%) 3 (14%)
Total 34 (100%) 27 (100%) 23 (100%) 21 (100%)

Organization Type 2017
Participants

2016
Participants

2015
Participants

2014
Participants

Academic 16 (47%) 12 (44%) 9 (39%) 15 (71%)
Commercial 18 (53%) 15 (56%) 14 (61%) 6 (29%)
Total 34 (100%) 27 (100%) 23 (100%) 21 (100%)

Approved for Public Release; Distribution Unlimited
28

Field of Education 2017
Participants

2016
Participants

2015
Participants

2014
Participants

Artificial Intelligence
/ Machine learning 3 (9%) 3 (11%)

Astronomy 1 (4%)
Biology 1 (5%)
Chemistry 1 (4%)
Computational
Science(3) 1 (3%) 1 (4%)

Criminal Justice 1 (3%)
Economics 1 (%) 1 (4%) 2 (9%)
Engineering (1) 1 (3%) 2 (7%) 4 (17%) 2 (10%)
Finance 1 (3%)
Genetics 1 (3%)
Informatics/Data
Science 2 (6%) 1 (4%) 3 (14%)

Math & Computer
Science 18 (53%) 16 (59%) 11 (48%) 12 (57%)

MBA 2 (6%)
Neuroscience 1 (4%) 1 (5%)
Other/Not Specified 1 (3%) 1 (4%)
Philosophy 1 (5%)
Physics (2) 1 (3%) 2 (7%) 1 (4%) 1 (5%)
Political Science 1 (3%)
Psychology 1 (4%)
Robotics 1 (4%)
Total 34 (100%) 27 (100%) 23 (100%) 21 (100%)

(1) Includes Aerospace, Biomedical, Electrical, Biological, Mechanical, Chemical
(2) Includes Biophysics
(3) Includes Social, Hydrodynamics

Approved for Public Release; Distribution Unlimited
29

LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS

AFRL Air Force Research Laboratory
ARPA Activity Recognition and Proactive Assistance
BP Belief Propogation
CALO Cognitive Assistant that Learns and Organizes
CDC Centers for Disease Control and Prevention
CFG Context-free Grammar
CP Challenge Problem
CRA Charles River Analytics
DARPA Defense Advanced Research Projects Agency
DoD Department of Defense
HMC Hamiltonian Monte-Carlo
ILI Influenza-like Illness
ISR Intelligence, Surveillance, and Reconnaissance
LDC Linguistic Data Consortium
MAP Maximum Aposteriori Probability
MCMC Markov chain Monte Carlo
MIDAS Multimedia Digital Archiving System
MIT Massachusetts Institute of Technology
N Noun
NLP Natural Language Processing
NP Noun Phrase
PCFG Probabilistic Context-free Grammar
PI Principal Investigator
PPAML Probabilistic Programming for Advancing Machine Learning
PPL Probabilistic Programming Language
PPS Probabilistic Programming System
RFP Request for Proposal
TA Technical Area
TCP Team Challenge Problem
UAS Unmanned Autonomous Systems
WAMI Wide Area Motion Imagery
WPAFB Wright Patterson Air Force Base
WSJ Wall Street Journal

